Probabilistic Constraint Robust Transceiver Design for MIMO Interference Channel Networks

نویسندگان

  • Anming Dong
  • Haixia Zhang
  • Dongfeng Yuan
چکیده

—In this paper, we investigate the robust transceiver design for Multi-Input Multi-Output (MIMO) Interference Channel (IC) networks with imperfect Channel State Information (CSI). With the assumption of Gaussian CSI uncertainty, a probabilistic constraint robust transceiver design problem is formulated by maximizing the average received signal while constraining the probability of large interference plus noise, both in downlink and uplink. To solve the formulated design problem, the probabilistic constraints are first transformed as Linear Matrix Inequalities (LMIs) using Markov’s inequality, and a semidefinite relaxation (SDR) technique is then applied to further recast the design problem as convex semidefinite programming (SDP) problem, which can be solved efficiently. An iterative algorithm based on alternative optimizing is proposed for the probabilistic constraint robust design. Simulation results verify that the proposed probabilistic constraint based robust transceiver design can provide robustness against Gaussian CSI errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first ...

متن کامل

A Near-optimal User Ordering Algorithm for Non-iterative Interference Alignment Transceiver Design in MIMO Interfering Broadcast Channels

Interference alignment (IA) has recently emerged as a promising interference mitigation technique for interference networks. In this letter, we focus on the IA non-iterative transceiver design problem in a multiple-input-multiple-output interfering broadcast channel (MIMO-IBC), and observed that there is previously unexploited flexibility in different permutations of user ordering. By choosing ...

متن کامل

The Optimal MMSE Transceiver Design for IoT-oriented Cognitive Radio Systems

This paper studies interference alignment scheme and minimum mean square error (MMSE) improvement in Internet of Things (IoT)-oriented cognitive systems, where IoT devices share the licensed spectrum by cognitive radio in spectrum underlay. Target to manage the inter-tier interference caused by cognitive spectrum sharing as well as ensure an MMSE at receivers, the interference alignment algorit...

متن کامل

Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties

This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted...

متن کامل

Maximizing First Order Approximate Mean of SINR under Imperfect Channel State Information for Throughput Enhancement of MIMO Interference Networks

This paper proposes a new algorithm to improve the throughput of the MIMO interference channel, under imperfect channel state information (CSI). Each transmitter and receiver has respectively and antennas and network operates in a time division duplex mode. With the knowledge of channel estimation error variance, mean of signal-to-interference-plus-noise ratio (SINR) is approximated. Each trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCM

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016